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We consider generalizations of Mandelbrot 's  percolation process. For the 
process which we call the random Sierpinski carpet, we show that it passes 
through several different phases as its parameter increases from zero to one. The 
final section treats the percolation phase. 
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In his book The Fractal Geometry of  Nature, Benoit Mandelbrot 
considers several, random sets with a statistically self-similar structure 
(Mandelbrot(7)). One of these, named canonical curdling, has been 
analyzed by Chayes et al., (1) who called this process Mandelbrot percola- 
tion. Another example is Mandelbrot's implementation of Hoyle's model of 
galaxies. Both are instances of a type of random sets which we simply call 
random Cantor sets and which we define by way of random substitutions. 
See Falconer ~4) or Dekking and Grimmett/3) for equivalent definitions 
involving random trees, respectively labeledbranching processes. An inter- 
esting subclass of these random Cantor sets consists of those generated by 
Bernoulli random substitutions, where the structure of the set may change 
drastically with changes of the Bernoulli parameter p. Examples are 
Mandelbrot's percolation process and a process which we call the random 
Sierpinski carpet. We define several phases for these processes and show, 
using previous work of Dekking and Grimmett (3~ and new methods 
developed in Section 3, that the random Sierpinski carpet passes through 
all these phases as p tends from 0 to 1. (For Mandelbrot percolation at 
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least one phase is missing.) The final section is devoted to an analysis of the 
percolation phase of these processes, which is more direct and more general 
than the approach of Chayes et al. m 

1. S U B S T I T U T I O N S  A N D  C A N T O R  SETS 

Substitutions are maps which assign words (concatenations of 
symbols) to symbols, and can be useful to describe self-similar sets or 
generalizations thereof as, e.g., quasicrystals (cf. Dekking~2)). By way of 
introduction, we show how to generate the classical Cantor  set by means 
of a substitution. Throughout  this paper our set of symbols will be {0, 1 }. 
We define a substitution a on this set by 

or(0) = 000, a ( 1 ) =  101 

Iterates of ~ are defined in the obvious way, e.g., o-2(1)= 101000101. Let 

Z~=E(k-1)3 n, k3 "] 

be the kth  triadic interval of order n. Let wn= an(l)  and let w~ be the kth  
symbol of this word, k = 1 ..... 3". For n = 1, 2, ... we define a subset A, of 
[-0, 1 ] by 

A , = U  { I ~ : w ~ = l }  
k 

Then (A,) is a decreasing sequence of compact  sets, and A = 0 ,  A, is the 
classical Cantor  set. 

Obviously, this construction generalizes to Cantor  sets in Ea, by 
arranging the symbols in a(0) and a(1) in d-dimensional cubes. Thus, one 
can obtain, e.g., the Menger sponge (Mandelbrot~7)). In this paper we 
restrict ourselves to the case d =  2, considering substitutions from {0, 1 } to 
the set of N •  N matrices for some positive integer N. The "holes stay 
holes" principle in the construction of Cantor  sets translates to the require- 
ment 

Iterating ~ a total of n times leads to an N n x  N n matrix Wn= ~n(1). Let 
I ~ l = I ~ x I ' / ,  where I ~ = E ( k - 1 ) N - n ,  k N - n ] ,  for l~<k, l ~ N  n. We call 
such a set I ~  a level-n square. We now consider the sets 

A , =  U {I~,: W~, = 1} 
k, l  
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The A' n decrease to a compact  subset A of the unit square. As an example, 
let N =  3, and let a be defined by 

o-(0) = 0 , ~(1) = 0 

0 1 

then A = A ~ is the Sierpinski carpet. 
Our  next step is to randomize this construction. We continue to 

require a ( 0 ) = 0  (the N •  matrix with all entries zero), but a(1) will be 
random, taking values in a set of N• N 0-1-valued matrices {U1 ..... Ur}; 
specifically, there are positive numbers p~ ..... Pr with p~ + -.- + Pr = 1 such 
that P[~r(1)= Ui]=pi, for l<~i<~r. (We will use the symbol P for the 
probability of an event determined by random substitutions. The probabil- 
ity space associated with this P will only lurk in the background.) 

Iteration is defined as follows: a n+ a(1) is obtained by replacing all O's 
in a"(1) by a ( 0 ) = 0 ,  and all l 's by independent random matrices dis- 
tributed as a(1). In this way, the number  of ones in an(l)  is a classical 

Fig. 1. A rea l iza t ion  of A 4 for p = 0.9. 
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Galton-Watson branching process with offspring distribution given by the 
p;. The limiting set A is called a random Cantor set. 

Example 1.1 (Random 
p2= l -  p l=  p e  [O, 1], and 

Sierpinski carpet). Take N =  3, r = 2 ,  

U 1 = 0 , U 2 = 0 1 

0 1 1 

Figure 1 shows a realization of A 4 for p = 0.9. 
~We call a random substitution o- a Bernoulli (random) substitution 

with parameter p if there is a set J of indices (k, l) such that a(1)kl = 0  if 
(k,l)q~J and P [ a ( 1 ) k t = l ] = l - - P [ a ( 1 ) k ~ = O ] = p ,  for ( k , l ) ~ J ,  inde- 
pendent of all other entries of a(1). 

Example 1.2 (Mandelbrot percolation). Here the set A ~ is 
generated by a Bernoulli substitution a with J the full set of indices. Note 
that a(1) takes values in the full set of 2 N2 matrices with entries 0 and 1. 
It is sometimes more practical to consider the random substitution 5 with 
5 ( 0 ) = 0  and (for N = 3 )  

F (i~ r (i i)l P 5 ( 1 ) =  0 = I - P  i f ( l )=  1 = l - - p  

0 1 

Note that A~+ 1 =A~ with probability p and A ~ + I = 0  with probability 
1 - p .  Hence, if A ~ is not empty, then it is equal to AL In the same way, 
the random Sierpinski carpet is generated by a Bernoulli substitution with 

J =  {(k, l ) : l  ~<k, l~<3, (k, l ) r  (2, 2)} 

2. M O R P H O L O G Y  OF R A N D O M  C A N T O R  SETS 

Let A be a random Cantor set in the unit square. We shall classify 
different states of A, ordered according to increasing "denseness." Some of 
these are phrased in terms of the projection n(A) of A onto the x axis and 
its Lebesgue measure ;t(n(A)). 

I. A = ~ almost surely. 

II. [ P [ A = ~ 3 ] > 0 ,  but dim(rrA)=dim(A).  

III. d im(nA)<dim(A)  a.s. given A r  but 2 ( h A ) = 0  a.s. 
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IV. 0 < )~(g(A)) < 1 a.s. given A :/= ~ .  

V. P[2(rc(A))= 1] >0 ,  but A does not percolate a.s. 

VI. A percolates with positive probability. 

Here dim(.)  denotes the Hausdorff dimension of a set, and A percolates 
means that A contains a connected set which has a nonempty intersection 
with the left and the right side of the unit square. As we will show, the 
random Sierpinski carpet (Example 1.1) passes through all of the six phases 
l ..... VI as the Bernoulli parameter p increases from 0 to 1. 

We first mention that it is known when a random Cantor set is in one 
of the first three phases. Let m / b e  the average number of ones in t h e / t h  
column of a(1), i.e., 

r N 

m~= 2 Pi ~ Ui(k,l) 
/ = 1  k = l  

Theorem 2.1. 

(i) 
a.s.]. 

(ii) 
(iii) 

Let A be a random Cantor set. Then: 

A = ~  a.s. iff Z ~ I  mt ~< 1 [unless or(l) contains exactly one 1 

dim(teA ) = dim(A ) iff ~ X . ~/=~ m/log ml ~<0. 

2(~A) ='0 iff zN= 1 log m/ ~< 0. 

Proof. (i) This follows from the extinction criterion for branching 
processes: ZN_x rn t is equal to the average number of ones in a(1), which 
is the mean of the offspring distribution of the branching process whose 
nth generation is the number of l's in an(l). 

(ii) This is partly proved in Dekking and Grimmett, (3) completed in 
Falconer. (5 

(iii) This is proved in Dekking and Grimmett. (3) | 

E x a m p l e  2.2. (i) For  the random Sierpinski carpet we have m 1 = 

m 3 = 3p and m2 = 2p. Hence A = ~Z~ a.s. for 0 ~< p ~< 1/8, A is in- phase II for 
1/8 <p<~54 1/4~0.369, and is in phase III for 5 4 - 1 / 4 < p ~  18 1/3~0.381. 

(ii) For  Mandelbrot percolation, there is no phase III: at p = 1/3, A 
passes from II to IV. Let A = A(p) be a parametrized random Cantor set 
as in the examples above, and let J ( ~ ) =  {p:A(p)  is in phase ~}, for 
~ = I,...,VI. If for ~<f l ,  J(c~) va ~ ,  J(fl)r and J (7 )=  ~ for all c~<7 <fl, 
then we define p~,~ = sup J (~ )=  inf J(fi). E.g., for the random set generated 
by the substitutions a ( 0 ) = 0 ,  a(1)=(o~o ~) with probability l - p ,  and 
a ( 1 ) =  (~ ~) with probability p, only Pv, w is defined (and one can show that 
1/2 < Pv.v I < 1). 
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The theorem above shows that PI, H, Pn, m, and Pm,~v can be exactly 
determined from the sole knowledge of the average number of l's in each 
column of a(1 ). There is no hope for such simple criteria for the other criti- 
cal values: phases V and VI involve interactions in horizontal directions. 
The best we can do is to show that all phases exist in the random 
Sierpinski carpet. We have not been able to prove the existence of phase V 
in the Mandelbrot percolation process. 

The next two sections are devoted to an analysis of the existence of the 
phases in the Sierpinski carpet. In the final section we analyze the percola- 
tion phase in both the Sierpinski and the Mandelbrot processes. 

3. M U L T I V A L U E D  A N D  R A N D O M  S U B S T I T U T I O N S  

In this section we consider random substitutions without reference to 
geometrical interpretations as in the previous section. As the results in this 
section do not depend on whether the symbols are ordered in words or 
matrices, we will consider the first case (for notational convenience), but it 
will be obvious that they apply to the random Sierpinski carpet and 
Mandelbrot's percolation process. 

We will now define a special class of multivalued substitutions (called 
0L-systems in Rozenberg and SalomaaCS~). Let q5(1) be a nonempty set of 
words of length N, such that 0 . . .  0 r q~(1). Let 4(0) be the complement of 
~b(1) in {0, 1} N. For words w and w', ww' denotes the concatenation of w 
and w'. Furthermore, we define the following sets: 

�9 (vw) = {v'wlv'~(v), w' e ~(w)}  

4 " ( 1 ) =  {C~(w)lwEcl)n-l(l)}, n>>-2 

The set ~n(0) is defined analogously. Note that �9 has the property that 
~b(v) n ~(w) = ~ if v ~ w. This clearly implies ~bn(0) n qsn(1 ) = ~3, for all n. 
It also follows by induction that ~n(0 )u  ~n(1)= {0, 1 )N". These observa- 
tions prove the following lemma. 

kemma 3.1. ~b"(0)= {0, 1}N"\qSn(1), for all n~> 1. 

E xa mpl e  3.2. Let N = 2 ,  qs(1)= {01}. Then cb2(1)= {0001, 1001, 
1101}. 

Next we introduce randomness. Consider a Bernoulli random substitu- 
tion with parameter p, which we denote by 0"p. Our principal object of 
study is 

7z~(p) = P [Crp(1) ~ ~"(1) ], n>~l 

where cb"(1 ) is defined as above. To illustrate this, we first give an example. 
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Example 3.2 (continued). N=2, J={1,2}, 4(1)={01}. Now 
it follows from simple calculations that  l r l ( p ) = p ( 1 - p ) ,  ~ 2 ( p ) =  
p 2 ( 1 - p ) [ 1 - p 2 + p 3 ] = p 2 ( 1 - p ) [ 1 - p 2 ( 1 - p ) ] ,  which is equal to 
~z](p2(1 - p))  = ~l(p~zl(p)). 

The  last equality is no coincidence, as the following proposi t ion 
exprcsscs. 

Proposition 3.3.  Let  O-p be a Bernoulli r andom substi tution and 
let ~,  be defined as above. Then we have, for all n >~ 0, 

re,+ I(P) = u l (pu , (p )  ) 

where :Co(p) is defined to be 1. 

Proof. Let O'p have index set J. We write 

r  = r 1 6 2  

= {q~'(w,) q~n(w2)--. ~b"(WN)[Wl' ' 'WN ~ q5(1)} 

"+1(1). This word lies in (b '+ l (1 )  iff there is a Wl "''Wu E~(1) Consider O-p 
n+I(1)G~'(W1)...c]On(WN). This word W=Wl . . . w x  is called a such that O'p 

starting point  and according to Lemma  3.1 it is unique if it exists. But 
ap+l (1 )  itself can be written as 

"+ 1(1) = ~p(~p(1)) = ~p(Ul ) ' ' ' ~ (UN)  Op 

where ui = 0  or 1 for all i. So a p + l ( 1 ) e r  iff ap(Ui)eq~'(wi) for all 
i and for a unique starting point  w. Note  that  ap(Ul),..., ap(UN) and a p ( 1 ) =  
U I ' ' ' U  N are independent.  Now fix w e ~(1) .  We calculate the probabil i ty 
that  w serves as starting point  for the r andom word ap+l(1) ,  i.e., 

r t  ~Tp(Ui) ~ CI)n(Wi), i= 1 ..... N. We need only to look at indices in the set J. 
n Suppose i e  J and w~ = 1. Then  for ap(Ui) to be in r u~ must be 1 and 

a~(1)~q~n(1). This obviously has probabil i ty pTr,(p). Now suppose i E J  
and wi = 0. Then  either (i) u i = 0 or (ii) u i = 1 and ~rp(1)e r  According 
to Lem ma  3.1, this is the complement  of the event associated with wg= 1 
and hence it has probabil i ty 1 -  prc,,(p). So the probabil i ty that  w serves 
as starting point  for ap +1(1) equals P[Op~Zn(p)(1)= W]. Because 
Crp'+l~l)e( q5 n+1(1) iff there is such a starting point  we~b(1),  we obtain 

rC,+l(P)=ul(Prc,(p)) .  | 

It is not  difficult to see from the definitions that (rc,(p)) is a non- 
increasing sequence in n. Hence the limit u ( p ) = ~ e ( p ) : = l i m , ~  ::,(p) 
exists. We will be interested in the quest ion of whether  or not  this limit is 
positive. To  answer this quest ion partially, we restrict ourselves to a special 
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class of sets ~(1). Consider a Bernoulli random substitution with index set 
J and a set of words ~b(1) as above. The set q~(1) is said to be increasing 
if the following is true: if W=WI'..WN~CAIS(I ) and wz=O for some i s  J, 
then w'= w~ . . .wi_l  lw~+1 "''WN S~(1)-  If qS(1) is increasing, it follows 
from Grimmett (ref. 6, Section 2.5) that gl(p)  is an increasing function in 
p. We define an iteration function Gp a s  follows: 

Gp(x) = ~l(px), x, p ~ [0, 1 ] 

It follows from Proposition 3.3 that ~n+ I (P)=  Gp(gn(p)) and we obtain 

~,,(p) = c~(1) ,  n~>l  

If ~b(1) is increasing, Gp(') is increasing and hence ~(p) is equal to the 
largest fixed point of Gp. As said before, we are interested in the positivity 
of zc(p). For  this we define 

p~.(@) = inf{p I ~e(p)  > 0 } 

The following lemma tells us how to find pc(qs) if ~(1) is increasing and 
in case of a Bernoulli random substitution. 

I_emma 3.4. Consider a Bernoulli random substitution and let 
q~(1) be an increasing set. Suppose that (6?/~p)~l(p)lp=l<l. Then 
pc(~b) < 1 and p,.(~) is equal to the smallest p for which the following 
system (*) has a solution: 

~G~(x)  = x 

( * ) l ~ G p ( x ) = l  

Proof. Gp(x) is increasing in both p and x. Furthermore, Go(x) -0  
and Gl(x)= ~l(x). If G'I(1) < 1, then there is a p < 1 such that Gp(x)= X for 
some x > 1, and hence pc(~)  < 1. To find pc(~), we now only have to look 
for the smallest p such that Gp(x) is tangent to the line y =x .  This is 
exactly the assertion of the lemma. | 

The technique in this section generalizes the method of Chayes et al., (ll 
which they use to prove that the percolation phase exists in the 
Mandelbrot percolation process. Applications of Lemma 3.4 will be given 
in the next section. 
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4. EXISTENCE OF ALL PHASES IN THE R A N D O M  
SIERPINSKI  CARPET 

We will prove the following two lemmas. 

k e r n m a  4.1. 1/2 <Piv ,  v ~<0-8085. 

L e m m a  4.2. 0.812 ~<Pv, v~ <~0-991. 

Together with Example 2.2(i), this is enough to show the existence of 
all phases. We remark that Lemma 4.2 implies that the critical value for the 
percolation phase in the 3 x 3 Mandelbrot  process is also smaller then 
0.991. This is a slight improvement over the results of Chayes et al. I1) The 
lower bounds in the two lemmas are proved with branching process techni- 
ques, while the upper bounds are obtained with the technique of the 
previous section, choosing proper sets ~(1). In the following, a level-n 
square I~t is said to be open if ap(1)(k, l ) =  1; otherwise it is closed. 

Proof of Lemma 4.1. The first inequality is easy. Let Zn denote the 
number of open level-n squares in the middle column. Then Z ,  is an 
ordinary branching process with mean offspring 2p, where p is the 
Bernoulli parameter  of the process. So for p ~< 1/2, Z n will not survive. We 
need only to remark that if Zn = 0 for some n, then 2(~(A))~< 1 - 3  -n. This 
proves the first inequality. 

For  the second inequality, let q~(1) be the set of 0-1-valued 3 x3  
matrices such that each column contains at least one 1. It is obvious that 
if ~ ' ( p )  > 0, then p >/P~v,v. In the terminology of the previous section, we 
have 

6p(x )  = p3x3(3 - 3px + p2x2)2 (2 - px)  (1) 

x ~x Gp(x) = p3x3(3 - 3px + pZx2) 

x (4px - 6)(5px - 2p2x 2 - 3) (2) 

From (1), we get, using ( , )  of Lemma 3.4, 

p3x3 = x {  (3 - 3px  + p 2 x 2 ) ( 2  - p x )  } ~ l ( 3 )  

and substituting this in (2) yields after some calculations 

- 7 p 3 x  3 + 27p2x 2 - 33px -1- 12 = 0 

It follows that p x  ~- 0.65524. From (3), we get that x ~ 0.8104. Hence p = 
0.8085 = pc.(q~). This proves that Piv, v ~< 0.8085. II 
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Proof of Lemma 4.2. This requires a bit more work. For  the first 
inequality, let S be a level-n open square in the middle column, which has 
open left and right neighbors (note that open level-n squares in the middle 
column never have upper or lower open neighbors). Let S1 and $2 be the 
two level-(n + 1) squares in the middle column contained in S. See Fig. 2 
for a definition of $3, ..., $6. 

We say that $1 is passable if (i) $3 and $1 are both open and (ii) the 
right side of S~ can be connected to the right side of either $4 or S 6 or 
both, by open level-(n + 1) squares at the right side of $1. For  $2, a similar 
definition holds, where $3 and S~ are replaced by $5 and $2, respectively. 

Now, for n ~> 2, let Z ,  denote the number of passable level-n squares. 
Then Z ,  is an ordinary branching process. If this process becomes extinct, 
there cannot be percolation, so it is worthwhile to calculate its offspring 
distribution. Let the number of children of a particular passable square be 
denoted by M. Then M equals zero, one, or two. In Fig. 3 it is shown how 
M =  1 can occur. The shaded squares are open, "c" means closed, the 
squares with an "a" are not allowed to be all open, and a "d" means that 
these squares are not allowed to be all open, but at least one of them is 
open. 

The probabilities that the given configurations occur are p4(l _p3) ,  
p6(1 _p)2 ,  p6(1--p)(1  _p2),  and 2p7(1 _ p ) 2 ,  respectively. The first three 
configurations should in addition be reflected in y = 1/2. We now obtain 
that the probability that M =  1 equals 2p4(1 _ p 3 )  + 2p6(1 _ p ) 2  
(2 + p )  + 2p7(1 _p)2  = 2p4(1 - p ) ( 1  + p  + 3p 2 - 2p4). Analogously, we find 
that M = 2  with probability pS (3 -2p ) .  Hence we obtain ~pM= 
2p4(l+2p--3p3+p4). It follows that ~_pM<~l iffp~<0.81256. Hence, for 
p ~ 0.81256 there is no percolation with probability one. 

We remark that it is possible to improve this bound by also 
considering squares at the left side of $1 and $2. But for the existence of 
all phases this is not necessary and we omit this slight improvement. 

53 

$5 

$1 $4 

• X 
52 56 

$ 
Fig. 2. The squares S, 5' 1 ,..., $6. 



Mandelbrot's Percolation Process 1119 

NNNNII 

a la la 

iiiiiiiiiiiiiiiiii~iiii!!iiiiiiii; !iii~ii~i~ii~ii 
:::::::::::::::::::::::::::::::::::::::::::::::::: C 

X -iNiii-iiiNi:I X 
:::::::::::::::: 
:::::::::::::::: 

C !iiiii~!!ii;- 
, , . . . , , . , . . .  

!ii:iiY  iii| i iii o 

~:i:i i Eli,: :i i:!r 

"iiiiiiiii?iiii~?'iii:-iiiii!iiii~" i!iii!i?i~!i!!i! d 
i-:.:.:+ .:.:..1:+:.:.:.:.:.:.:4:.:.:.:.:.:.:+:1 . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .  

::::::::::::::::::::::::::::::::::::: ~:i!~:~:~:i:~:!: 
::::::::::::::::::E::::::::::::T:::::::;:::;7 d 

Fig. 3. Realizations of M= 1. 

For  the second inequality, we again use the technique of the previous 
section. Let q~(1) be the (increasing) set of 3 x 3  matrices U with 
U(2, 2 ) =  0 and which contains at least seven ones. It is not difficult to 
prove by induction that i fp  ~> pc(qs), then p ~>Pv, w. To calculate pc(~b), we 
find, in the notation of the previous section, 

G p ( x )  = p 7 x 7 ( 8  - -  7px) (4) 

0 
x ~ 6p(x) = 56p~x~(1 - p x )  (5) 

Now (*) from Lemma 3.4 easily leads to p x  = 48/49 and substituting this in 
Gp(x) = x yields x =  (8/7)(48/49) 7 and hence pc(qs) = (7/8)(49/48) 6 
0.99023. This proves Lemma 4.2. | 

5. T H E  P E R C O L A T I O N  P H A S E  

In this section we will analyze the sixth phase, in which there is a 
positive probability to have percolation. This phase exists in both 
Mandelbrot 's  percolation process and the random Sierpinski carpet, as we 
showed in the previous section. We remark here that if we set p = 1 for the 
Mandelbrot  process, then it fills [0, 1]. 2 However, percolation is not 
caused by this, because, for p = 1, the Sierpinski carpet is still a nowhere- 
dense, Lebesgue measure zero set. 

Our  main results (Theorem 5.3 and 5.4) have to do with the way in 
which the transition to the percolation phase takes place. In case of 
Mandelbrot 's  percolation process, these results were already obtained by 
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Chayes et al. (~1 However, our proofs are much simpler and easily extend to 
the random Sierpinski carpet, where their method breaks down. In par- 
ticular, we do not need the full analogue of the classical RSW theorem for 
ordinary percolation. Instead, we use a qualitative analogue which is easy 
to prove (see Lemma 5.1). We start with some notation. In this section ap 

stands for the Mandelbrot 3 • 3 substitution with Bernoulli parameter p, 
and ffp refers to the random Sierpinski carpet. For S a rectangle and o- a 
random substitution, ~ ( S )  denotes the event that A" c~ S contains a con- 
nected component which intersects the left and right sides of S. We say that 
S is crossed horizontally in that case. Similarly, we define V"(S) ,  with 
"left" and "right" replaced by "top" and "bottom," respectively, and S is 
said to be crossed vertically in this case. Two principal objects of study are 
the percolation function 0 and the critical value p,  defined by 

O(p) = P[Jt~"~([0, 112)] 

Pc = inf{plO(p) > 0} 

We define O(p) a nd /~  in the same way. It will turn out to be useful to con- 
sider the process in the rectangle [0, 1] x [0, 2], putting two independent 
copies of the process on top of each other. The corresponding definitions 
are 

~(p) = P [-Yf~,([O, I ]  x [0, 2 ] ) ]  

and ~(p), which is defined using ~p instead of erp. It is immediate to see that 
~(p) ~> 0(p) and ~(p) >/~(p). The following two lemmas are less clear as far 
as a proof is concerned. We think that no one will be surprised by their 
conclusions and we postpone the proofs till the end of this section. 

Lemma 5.1. If z (p)>0 ,  then O(p)>O. 

Lemma 5.2. If g (p )>0 ,  then O(p)>0.  

Given these lemmas, short and elementary proofs can be given for a 
number of results concerning the phase transition to the percolation phase. 
The first asserts that the limiting set A ~ or A a~ has a more violent phase 
transition than possibly expected from the bare definitions. 

Theorem 5.3. If D[A"~ contains a connected component larger 
than one point]  > 0, then O(p) > 0. The same is true if we replace 6p and 
O(p) by if(p) and O(p), respectively. 

Proof. We give the proof for the Mandelbrot percolation process. 
The proof in the case of the random Sierpinski carpet is identical. It follows 
from the assumption that for n large enough, there exists a level-n column 
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Kn, say, such that P[~f~o(K,)]  >0.  The column K~ contains the level-n 
squares S~ ,..., $3~. Now consider a connected component C c A~, c~ K, such 
that C crosses K, horizontally. Such a C exists with positive probability 
and there are two possibilities, at least one of which must have positive 
probability to occur: 

1. C has a nonempty intersection with at least three level-n squares 
S~ 1, S~, and Si+~. 

2. C has a nonempty intersection with at most two level-n squares Sj 

and Ss + 1 . 

In case 1, it follows that P [ U ~ f f S i ) ] > 0 .  But P [ ~ , ( S i ) ] =  
P[.Nf~ffS/)] = pnO(p) and hence O(p) > O. 

In case 2, we obtain P [ Y f ~ f f S j w S s + , ) ] > O .  From this it is easy to 
see that either O ( p ) > 0  or T(p)>0 .  According to Lemma 5.1, we obtain 
O(p)>O anyway. | 

The following natural question comes to mind: what happens with the 
percolation functions 0 and 0 at p,  resp./~c? In ordinary two-dimensional 
percolation, it is known that the corresponding percolation function is 
continuous (see, e.g. ', Grimmett(6)). In particular, the probability to have 
percolation at the critical point equals zero. There is a simple argument 
which shows that our processes both have discontinuous phase transitions, 
i.e., O(p~)> 0 and [t(/3c)>0. Chayes et al. (') claim that the reason for this 
discontinuity is the apparent asymmetry between open and closed squares: 
closed squares will always be closed, while open squares may be closed at 
any time. In our opinion, this is not the main reason for the discontinuity. 
The explanation lies in the rescaling property of the processes. As we will 
see in the proof of Theorem 5.4, the probability to cross a column horizon- 
tally is of the same order as the percolation probability. But to have per- 
colation, three level-1 columns must be crossed horizontally. Because all 
these events have probabilities of the same order, this cannot be true if the 
percolation probability becomes too small. We will make this argument 
rigorous in the next proof. 

T h e o r e m  5,4. 0 is discontinuous at p~ and ~ is discontinuous at/~c. 

Proof. Again we only prove the assertion for the Mandelbrot per- 
colation process. The first remark is that it is an easy analytical fact that 
0 and r are right-continuous (see, e.g., Chayes et al.(1)). It now follows from 
Lemma 5.1 that it is sufficient to prove that r is discontinuous at Pc. It 
might seem strange, but this is much easier than a direct proof of the 
theorem. 



1122 Dekking and Meester  

If J t~,([0,  1] x [0, 2])  occurs, at least one of the following events 
must occur: 

6 

EPl = U ff /~p(si)  
i -1  

5 
EP = U d~cgaP(Si t.) Si + 1) 

i=l 

where S~ ..... $6 denote the six level-1 squares in a particular level-1 column, 
ordered from top to bottom. To see this, compare with the proof of 
Theorem 5.3:E1 corresponds to case 1 and E2 corresponds to case 2. Since 
there are three level-1 columns, we obtain 

z(p)~<{PEEPuEp]}3~< PEE p ] + p E E p ] }  3 

We have 

PEE~] ~< 6P [~~  = 6pO(p) 

and 

p[E~] ~< 5 p D f ~ , ( s ,  u s2)] 

= 5 [p2r(p) + 2p(1 - p )  0(p)]  

~< 5p2~(p) + lOpO(p) 

Combining these estimates, we obtain 

r(p)  1/3 ~ 16pO(p) + 5p2v(p) ~< 21z(p) 

Now suppose r(p)~a 0. Then it follows that 

"r(p) 2/3 >/1/21 

o r  

r (p)  ~ (1/21) 3/2 

Thus, z is discontinuous at Pc. I 

This leaves us with the proofs of Lemmas 5.1 and 5.2. Their proofs are 
not at all difficult, but require some definitions. The proof of Lemma 5.1 
can be seen as a qualitative analogue to the classical RSW theorem from 
ordinary percolation. It shows that if P[~(C~ b] x [c, d ] ) ] > 0 ,  then 
also P [ ~ p ( [ a , e ] x  [ c , d ] ) ] > 0  for all e>b. The only nonelementary 
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ingredient of the proof is the well-known F K G  inequality (see, e.g., 
Grimmett(6)). It asserts that if E 1 and E2 are two increasing or two 
decreasing events which depend on at most countably many random 
variables (as is the case in our model), then PEEl ~ E2] ~> PI-EI] PIE21. 

Proof  o f  L e m m a  5.1. We need some definitions. Let $7 denote a 
level-n square in [-0, 3 - " ]  x [0, 2] (i.e., in the first level-n column), S~ a 
level-n square in the ith level-n column, for some i E {1,..., 3 n ~}, T m i a 

level-m square in the j t h  column for some j e {2-3 m- ~ + 1 ..... 3 m }, and T~ ' 
a level-m square in the final level-m column. The rows containing these 
squares are denoted by sT, s~, t T, and t~. Note that $7 and S~ are squares 
in [0, 1/3] x E0, 2], while T T and T~ are contained in [-2/3, 1] x [-0, 2]. 
We consider the following event: 

C(S'~, S~, T 1, T ~ ) =  {A ~ contains a connected component C which 
crosses [-0, 1 ] x [0, 2] horizontally, such that the intersection of C with the 
first i level-n columns connects the left side of $7 to the right side of S~, 
and the intersection of C with the final 3 m -  j + 1 level-m columns connects 
the left side of T~ to the right side of T~} 

iiiiiiiii; iiiiiiil;i ii!il;;iil 
f 

/ 
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, ,  

iii!iliiii 
iiiiiiiiiiii i i i i i iiiiiii 
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'~i:i.i:i:i -.-- ~:!:~ 

/ 

Fig. 4. The event C(Sll, S~, T~, T2). 
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Now r ( p ) >  0, so for each choice of n and m we can find S~, S~, T~; ', 
and T~' as above with P[C(S~,  S~, T~', T~')] >0.  Suppose that this is 

. . . .  C s ~ a n d  m e  m. seeFig. 4, true for a choice $1, $2, T~,  and T 2 with s 1 tl t 2 , 

where n = 1, m =2 ,  and where the squares Sll, S 1, T~, and T 2 are shaded. 
Given this event, Fig. 5 shows how to build a crossing of 

[0, 3] x [0, 2]. Rather than giving a turgid formal proof, we remark that 
it follows from reflection, translation invariance, and the F K G  inequality 
that such a crossing has positive probability. It then follows that 
P[~'~~ 3] x [0, 3 ] ) ]  > 0 and hence, by rescaling, O(p)> O. 

It remains to prove the existence of squares S~, S~, T~', and T~' with 
these properties. First we only require s~ r sg, and suppose such squares do 
not exist. This implies that there is a level-2 row i2, say, such that 
there is a positive probability q > 0 ,  say, that a horizontal crossing of 
[0, 1 ] x [0, 2] intersects the first three level-2 squares of this row. In par- 
ticular, all first three level-2 squares of this row must be open. Further- 
more, there is a level-3 subrow of i2, i3 say, such that there is a probability 
of at least q3-~ that this crossing intersects the first nine squares of this 
row. Again, these first nine squares must be open in that case. Iterating 
this, we conclude that the probability that there exists a level-n row with 
all its first 3" ~ level-n squares open is at least q3 2 ~. On the other hand, 
it is easy to deduce that this probability is at most 

2 - 3 " P [ r o w  1 has all its first 3 ~ ~ squares open] ~< 2-3"p 3" 

Fig. 5. Building a crossing of [0, 3]  x [0, 2]. 
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Hence 

q3 2 " <~ 2.3'~p y'--1 

which is impossible for n large enough. Now fix $7 and S~, s7 Cs~, with 

pEc(sT, s~, rT, r~)] >0 

Using the same argument, it follows that we can find T] n and T 2, t'(' ~ t~ ~, 
such that this event still has positive probability. | 

P r o o f  o f  L e m m o  5.2. The proof above does not work here because 
of the lack of translation invariance. But because of the special structure of 
this process, a proof is even easier. Suppose O(p)= 0. Let K, denote the 
middle column in [-0, 1] x [0, 2] after n subdivisions. It follows by con- 
struction that K, can contain only two adjacent open level-n squares for all 
n. Furthermore, the probability that there do exist two such squares goes 
down exponentially fast; in fact, it equals pzn .  Now let Z denote the first 
index n such that K,, does not contain two such squares. Then Z is finite 
almost surely and hence 

f(p,)~< ~ P [ Z = n ] P [ ~ e , ( K , ) I Z = n ]  
n ~ l  

~< ~ pEZ=n]{1- E1- 0(p)] 2"} =0 
n = l  

which is a contradiction. Hence 0 ( p ) >  0. | 

We end with a remark concerning the Mandelbrot process. We con- 
sidered in this section the 3 x 3 case. Nothing changes essentially if we 
replace 3 by a larger integer. For  the 2 x 2 case, however, a minor problem 
arises to show the existence of the percolation phase. It is not possible to 
find a proper increasing set 4(1)  with the property that, if p>~p ~ then c , 
P/> Pv, w. We can solve this problem by comparing with the 4 x 4 case, as 
remarked in Chayes et al. ~1~ Using simple coupling, it is not difficult to 
show that i fpi  denotes Pv.vi in the ix  i Mandelbrot process, it is true that 
P2 ~< 1 - (1 - p l / 2 ) 4 ,  which is strictly smaller than one. 
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